Tadashi Ema

Professor Dr.
Division of Applied Chemistry
Graduate School of Natural Science and Technology
E-mail: ema@cc.okayama-u.ac.jp
Page: http://achem.okayama-u.ac.jp/soc/index.html

Fields of interest:

Biocatalysis, Organocatalysis, Bioorganic chemistry, Organic synthesis.

Recent publications:

Chemical modification of lipase for rational enhancement of enantioselectivity.
Ema, T.; Inoue, H. Chem. Lett. 2015, 44, 1374-1376.

Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: Manipulation of the transition state.
Ema, T.; Nakano, Y.; Yoshida, D.; Kamata, S.; Sakai, T. Org. Biomol. Chem. 2012, 10, 6299-6308.

Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: The dramatic effect of the immobilization support on enzymatic function.
Ema, T.; Miyazaki, Y.; Kozuki, I.; Sakai, T.; Hashimoto, H.; Takada, J. Green Chem. 2011, 13, 3187-3195.

Chemoenzymatic synthesis of optically active alcohol and β-amino-acid derivative containing the difluoromethylene group.
Ema, T.; Kadoya, T.; Akihara, K.; Sakai, T. J. Mol. Catal. B: Enz. 2010, 66, 198-202.

Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates.
Ema, T.; Kamata, S.; Takeda, M.; Nakano, Y.; Sakai, T. Chem. Commun. 2010, 46, 5440-5442.

Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold.
Sakai, T.; Miyazaki, Y.; Murakami, A.; Sakamoto, N.; Ema, T.; Hashimoto, H.; Furutani, M.; Nakanishi, M.; Fujii, T.; Takada, J. Org. Biomol. Chem. 2010, 8, 336-338.

Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli.
Ema, T.; Ide, S.; Okita, N.; Sakai, T. Adv. Synth. Catal. 2008, 350, 2039-2044.

Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: Toward practical and green access to clopidogrel.
Ema, T.; Okita, N.; Ide, S.; Sakai, T. Org. Biomol. Chem. 2007, 5, 1175-1176.

Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity.
Ema, T.; Yagasaki, H.; Okita, N.; Takeda, M.; Sakai, T. Tetrahedron 2006, 62, 6143-6149.

Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
Ema, T.; Fujii, T.; Ozaki, M.; Korenaga, T.; Sakai, T. Chem. Commun. 2005, 4650-4651.